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ABSTRACT

The aim of the present communication has been to set up the Eulerian
system of equations which governs the motion of a self-gravitating de-
formable body (regarded as a compressible fluid of arbitrarily high
viscosity) about its own center of gravity in an arbitrary external field
of force. TIf the latter were particularized to represent the tidal
attraction of the Sun and the Moon, this motion would represent the
luni-solar precession and nutation of a fluid Earth; if, on the other
hand, the external field of force were governed by the Earth (or the
Sun), the motion would define the physical librations of the Moon regarded
as a deformable body. All these (and other) cases arising in the solar

system will be treated in due course.

The specific aim of this first of a series of reports in which these
problems will be discussed will be to establish the explicit form of the
system of differential equations which are basic to our problem. One
specific aspect of their solution--namely, dynamical tides on deformable
bodies and the consequent dissipation of energy--will be deferred to a
second report of this series; while reports II1 and IV will be concerned
with particular cases of the precession and librations of the Earth and
the Moon. The concluding report V will be devoted to a discussion of the
differences which are encountered if the self-gravitating deformable
body behaves, not as a viscous fluid, but rather as an elastic solid.

As will be shown, these differences will prove to be largely formal,
and limited mainly to a different interpretation of the parameters

involved.



I. TINTRODUCTION

The differential equations which govern the motions of self-
gravitating bodies about their center of gravity--whether free or
forced--have been known since the early days of the history of rational
mechanics; and the investigators of their solutions bearing on the
precession and nutation of the Earth, or the physical librations of the
Moon, included (to name only the greatest) Newton, Euler, Lagrange and
Laplace. All these investigators assumed in common that the body moving
about its center of gravity in an external field of force can be regarded
as rigid; and its external form (or moments of inertia) be fixed and
independent of the time. However, it was not till in the second half
of the 19th century that it has been gradually realized that a self-
gravitating body of the mass of the Earth or the Moon cannot be regarded
as rigid or incompressible; moreover, observations have revealed (at
least in the case of the Earth) that its form responds to a fluctuating

external field of force through bodily tides.

A mathematical treatment of the motion of deformable bodies about
their center of mass in an external field of force was, however, slow

to come (cf. Liouville, 1858; Gyldén, 1871; Oppenheimer, 1885; Darwin,

1879; Poincaré, 1910) and is still far from being solved for the precession

or nutation of the Earth; while its bearing on the physical librations
of the lunar globe has not yet even been considered. The aim of the
present series of reports will be to provide a more comprehensive treat-

ment of this subject than has been done by all previous investigators,




and to do so on the basis of the fundamental equations of hydrodynamics,
in which the three velocity components u, v, w will be systematically
expressed in terms of the independent rotations, about the three

respective axes x, y, 2z, with angular velocities W wy’ and w,
Departures from a hydrodynamical treatment, necessitated if the response
of a deformable body to an external strain is that of an elastic solid

rather than that of a viscous fluid,(i.e., if we deal with a "Maxwell"

rather than '"Kelvin-Voigt" body), will be taken up in the concluding

report of this series.
II. EQUATIONS OF THE PROBLEM

As is well known, the Eulerian fundamental equations of hydrodynamics
governing the motion of compressible viscous fluids can be expressed in

rectangular coordinates in the symmetrical form
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where u, v, w denote the velocity components of fluid motion, at the

time t, in the direction of increasing coordinates x, y, 2, respectively;

+u—+v-—y+w— (2-4)

representing the Lagrangian time-derivative (following the motion); o

stands for the local density of the fluid; P, for its pressure; 2, for




the total potential (internal as well as external) of all forces

acting upon it; and
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are the respective components of the viscous stress tensor, where u

denotes the coefficient of viscosity and

A

the divergence of the velocity vector of the fluid.

As is well known, equations (2-1) - (2-3) safeguard the
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conservation

of momentum of the underlying dynamical problem; and as such represent

only one-half of the system necessary for a complete specification of the

six dependent variables

u,

v, W5

py P, Q3

of our problem. Of the remaining three equations, two can be adjoined

with relative ease:

namely, the equation of continuity



Dp = -
Dt + pA 0 (2-12)

safeguarding the conservation of mass, and the Poisson equation
V2Q = -4mGp (2-13)

which must be satisfied by the gravitational potential (G denoting the

constant of gravitation).

The sole remaining equation required to render the solution of our
system determinate (for an appropriate set of boundary conditions) must
be derived from the principle of the conservation of energy, in the form
of an "equation of state' relating P and p; but its explicit formu-

lation will be postponed until a later stage of our analysis.

III. THE COMPONENTS OF VELOCITIES AND ACCELERATIONS

In order to apply the system of equations set up in the preceding
section for the study of the motion of a self-gravitating body about its
center of gravity, consider the transformation of rectangular coordinates
between an inertial (fixed) system of space axes x, y, z, and a rotating
system of body (primed) axes x', y', z', possessing the same origin,
but with the primed axes rotated with respect to the space axes by the
Eulerian angles ¢, 6, ¥, in accordance with a scheme illustrated on

the accompanying Figure 3-1.

As is well known, the transformation of coordinates from the

space to the body axes is governed by the following matrix equation
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X apr 212 213 x'
yl = {az1 axy az3 y'y o, (3-1)
z az) azy aszj z'

where the coefficients a0 expressed in terms of the Eulerian angles

assume the explicit forms

aj;] = cos Y cos ¢ — cos 6 sin ¢ sin Y,
ajp = -sin Yy cos ¢ - cos 6 sin ¢ cos U, (3-2)
a3 = sin 6 sin ¢ H
a1 = cos ¢ sin ¢ + cos 6 cos ¢ sin Y,
ajp = -sin Y sin ¢ + cos 6 cos ¢ cos Y, (3-3)
ayy = - sin 6 cos ¢ >

az; = sin ¢ sin 6,
azp = cos ¢y sin 8, (3-4)

azz = cos 6.

In order to obtain the corresponding space velocity-components
u, v, w, let us differentiate equations (3-1) with respect to the time.
With dots denoting hereafter ordinary (total) derivatives with respect

to t, we find that

Xx=u-= éllx' + élzy' + :3132' + all)'c' + 812}." + 8132' ’ (3-5)
Y= vo=dp)x' + Ay' + 833z" + ap k' + apy' + apst', (3-6)
z=w= é31x' + 532}" + é,332' + 331}.(' + 832}." + 333.’.{'; (3-7)




whereas the body velocity-components

where
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with respect to the space axes; or

woo = +(ay3dy; + az3dyy + azsdsy)
(3-25)
= ~(ajpd13 + appaz3 + azpass),
“yr T +(ay1d13 + ap1373 + az1dss) )
(3-26)
= -(ay38)) + az3ap) + azzas)), J
w1 = +(aj2d1) + appdz; + azdsy) ]
(3-27)
= -(ay1d)7 + azjapy + az1asy), J

with respect to the body axes; the pairs of alternative equations arising
from the fact that, by a time-differentiation of the relations aijaik = ij

it follows that a,.a,, + a.. a,,6 =0.
ij ik ik "ij

Inserting in the equatioms (3-22) - (3-27) from (3-11) - (3-19) it

follows that, in terms of the Eulerian angles,

w = g cos ¢ + & sin 6 sin ¢, (3-28)
wy = é sin ¢ - & sin 9§ cos ¢, (3-29)
w, = + § cos 6 + 43 (3-30)
while
Wy = & sin 6 sin y + § cos Vs (3-31)
w, = ¢ sin 6 cos y - § sin y, (3-32)
w1 = $ cos 6 + i, (3-33)

as could be also directly verified by an application of the inverse of

the transformation (3-1), in accordance with which
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= + + a
Wyr T 110y T a2)0g 31W, s
wy, = alzwx + azzwy + 332wz, (3—34)
w 4 =

= a + + a .
130y T 8230y 33w,

With the aid of the preceding results the equations (3-5) - (3-7) or
(3-8) - (3-10) for the velocity-components with respect to the space or

body axes can be reduced to the forms

= _ ' -
u = zwy yo, + ug (3-35)
V=xe - zw + V) (3-36)
z x
v = yu - xwy + W) (3-37)
or
u' = -Z'wy, + y'wz, + ug, (3-38)
v' = —x'wz, + z'wx, + v, (3-39)
w' = —y'wx, + x'wy, + wg, (3-40)
where

up = ajju + azv+ azw
vy = ajpu + az,v + azow (3-41)

wog = ajsu t ap3v + azaw

are the space velocity components in the direction of the rotating axes

x', y', z'; and

ug = allu' + 812V' + a13w'
V6 = a21u' + 322V' + a23w' (3'42)
W(') = 8311.1' + a32v' + a33w'

are the body velocity components in the direction of the fixed axes
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Xy ¥y Zo

In order to specify the appropriate forms of the components of
] acceleration, let us differentiate the foregoing expressions (3-35) -
(3-40) for the velocity components with respect to the time. Doing

2

so we find that those with respect to the space axes assume the forms

u = Wiy + z&y - v, - y&z + uf, (3-43)
v = uw,, + x&z - W = z&x + ¥4, (3-44)
. . s o1 _

W= Ve + yo uwy xwy + W), (3-45)

where the velocity components u, v, w have already been given by equa-

tions (3-35) - (3-37); and where, by differentiation of (3-42),

up = allﬁ' + a17_\'7' + ajsw'

(3-46)
+ éllu' + élZV' + é13w',
\'76 = azju' + az,v' + ap3w'
(3-47)
+ éz]_u' + ézzv' + ézgw',
oy __ ] ] X
WO = a31u + 332V + 333W
(3-48)

+ é.311.1' + é32V' + é33W'.

The first three terms in each of these expressions represent obviously
the body accelerations with respect to the space axes; and we shall

abbreviate them as

ajju' + ajpv' + a13‘;7' = (ﬁ)é,
8211.1' + 322‘.7' + 323‘:1' = ({7)(')’ (3_49)
a31£1' + 332\./' + 333‘;7' = (V.V)(').



~12-

Since, moreover, by insertion from (3-11) - (3-13) and (3-42),

éllu' + élzv' + él3w' = (a31wy - aZIwz)u'
+ (azyw - a !
(ag2ey = azw )v

+ (az3w - a '
(az3 y 230, )

wy(a31u' + azpv' + azsw')
- wz(a21u' + ajov' + ap3w') (3-50)

- L - 1.

and, similarly,

while

A ' 2 ' : LI [ - 1 -
azju’ + azyv' + ajzw' = wzuo wxwo (3-51)

. T L] .
azju + a32v' + a33w' wxvo - wyua, (3-52)

equations (3-43) - (3-45) can be rewritten in a more explicit form

4 =

v =
and

W o=

The
inertial

2 2 o .
= - + - +
x(w w) + y(w_ w w ) + z(w w w )

+ (W)} + 2(w(')wy - vbwz), (3-53)

_ 2+2 _ .
y(wl + ) + z(wywz w) + x(wxwy tow)

+ (V) + 2(u6wz - wéwx), (3~54)

4
wx)

2 2 e
- + W + w w - + w

+ (W) + 2(v(')wx - uawy). (3-55)

foregoing equations refer to accelerations with respect to the

system of space axes. Those with respect to the (rotating)

body axes can be obtained by an analogous process from the equations
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' = we , - 20, + v , + y'&z, + uq, (3~56)
* vi==u'u , - x'b,+wuw,+z &x' + Vg, (3-57)
w' = -y wr = v'e , +u'w , + x'&y, + wq, (3-58)

equivalent to (3-43) - (3-45); which on being treated in the same way

as the latter can eventually be reduced to the form

= xR WP ) Y (e 0, + 2t (e, - bn)

+ (1.1)0 - Z(Wowyv - Vowzl)’ (3-59)
v = -y'(wzz. + wle) + Z'(wvazv + ‘:va) + X'(wwiyu - ‘.*)zv)

+ (Vg - 2(ugw_y = wow_,), (3-60)
‘;Tl =

= —z'(wzx, + wzy,) + x'(wx,wz, + (I)y,) + y'(wy,wz, - t:)x,)

+ (0o - 2(vouw , - Uou 1) 5 (3-61)
where the space velocity components ug, vg, wg in the direction of
increasing x', y', z' continue to be given by equations (3-41); while

the corresponding components of the accelerations are given by

(1'1)0 = a111'1+ 821\.74' 831‘;7,
(\'7)0 = 3121.1 + azz\'r + 63261, (3-62)
(V;])O = a13i1 + 323\'7 + a33v'¢.

If, in particular, we consider the restricted case of a rotation about

the z-axis only (so that w = wy = 0), equations (3-53) - (3-55) will

reduce to the system

(W) - 2vua + Xwi - Yw._,

n

()4 + 2ua_ + ywi + xb, (3-63)

U
—~
e
~
[e=]
we
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while equations (3-59) - (3-61) will likewise reduce to

r t+ y"bzv’

' - x'&z,, (3-64)

' = | (& + 2v' + x'
a (4) g vie w

NN NDN

v =1 (N 2u'wz, + y'w

w' = (Wgl -

It is the accelerations in the cartouches of the two systems--referred
as they are to the inertial space axes~-which should be identified with

the Lagrangian time-derivatives

>
DV

Dt

on the left-hand sides of the equations (2-2) ~ (2-3) of motion if these

are referred to the inertial or rotating axes of coordinates.

A closing note concerning the time differentiation of the coordinates

or velocities should be added in this place. As

x = x(t), y = y(t), z = z(t), (3-65)

it follows that

}'( zT u = Q = E
- dt ot ?
}.7 v = -g—% = %% , (3"66)
> = = _dl = i%.
2=V =4 at ?

i.e., the ordinary (total) and partial derivatives of the coordinates
with respect to the time are obviously identical. This is, however,

no longer true of the time-differentiation of the velocities--whether
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linear or angular. As

u = u(x,y,z;t)
v = V(X’yaz;t) (3—67)

w = w(x,y,z;t)

or

U)X,y,z : stYaz(X,y’z;t)’ (3_68)

where the coordinates (3-65) are themselves functions of the time. In

consequence,

du _ 8u , du 9x , du 9y , du 9z

Y= de T 5t T Bx ot | By ot | 3z at
(3-69)
Ju Jdu Ju du
=24 S g2 <2
ot tux TV oy W 9z
by virtue of (3-66); and similarly for Vv and w. Likewise,
o= dw _ dw dw dw dw -
O T TV TV oy TV (3-70)
for w = w .
X,YQZ

For coordinate systems referred to the rotating body axes similar
reltions hold good; care being merely taken to replace the unprimed

coordinates or velocity components by the primed ones.

IV. FORMATION OF THE EULERIAN EQUATIONS
FOR PRECESSION AND NUTATION
In Section II of this report we set up the general form of the equa-
tions governing the motion of compressible viscous fluids in rectangular

coordinates; and in Section 111 we expressed its velocity components in
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terms of arbitrary rotations about three rectangular axes. The aim of

the present section will be to combine the fundamental equations (2-1) -

(2-3) rewritten in terms of the angular variables 0 v,z introduced in
] b

Section III in a form suitable for their subsequent solution.

In order to embark on this task, let us multiply equatioms (3-53) -

(3-55) by x, y, z and form their following differences:

C e o2 2y 2 _ .2
yw PAY (yc + 2z )wx + (y z )mywz

- xy(wy - wxmz) - xz(wZ + wxwy)

- yz(w; - wi) (4-1)
+ {y@) ¢ - Z(ﬁ)é} + Zy{véwx - uéwy}
- 22{u6wz - wéwx},

zi - xw o= (22 + x2)b + (22 - xD)w_ w
v X z

_ . _ © 4
yz(wZ wywx) yx(wx wywz)

- zx(wi - wi) (4-2)
+ {z(ﬁ)é - x(&)é} + Zz{wéwy - véwz}
- 2x{v(')wX - uéwy},

xv - yu = (x% + yz)d)z + (x2 - yz)wxwy

- zx(wx - wywz) - zy(wy + wxwz)

- XY(wi - w;)s (4-3)
+ {x(ﬁ)é - y(ﬁ)é} + 2x{u6wz - wéwx}
' . |
- Zy{womy vowz}.
If so, however, equations (2-1) - (2-3) can be combined accordingly to

yield
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. . 1 3 J d 3
yw - zVv + ;{y 32 2 3;}? -y 5z " 2 5;}9 = yIf - 20,
AN YO R} 3 315 . ,9-
zu - xw + p{z vl BZ}P - iz =" X az}Q = 2F - xH
. . 1 9 3 d d
XV - yu + ;{x 3y Y 3;}? - {x 3y y-g;}Q = xG - y9,
where
aoxx aox aoxz
= XX, X, X2
g 9% * y 3z ?
tls} Ll 90 __
pg =__1§+_ﬂ+._—.7_2_,
e oy dz
aOzx 80%17 8022
Pt = Yoy Yo

represent the effects of viscosity.

(4-4)

(4-5)

(4-6)

(4-7)

(4-8)

(4-9)

In order to proceed further, let us rewrite the foregoing expressions

in terms of the respective velocity components.

components oij of the viscous stress tensor from (2-5) - (2-10) we

Inserting for the

find the expressions on the right-hand sides of equatiomns (4-7) - (4-9) to

assume the more explicit forms

Boxx R aoxy N aoxz - 2+
[-b:4 Jy oz
+ 2428

(4-10)



and

where

vector; and v2
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aw

denotes, as before, the divergence (2-11) of the velocity

_+ﬂ£@a

_ Alop
319z

Sw(du
+ ox\| o9x

b

Y &M
oz\ oy

stands for the Laplacean operator.

Next, let us insert for the velocity components u, v, w

(3-35) - (3-37); by doing so we find that

and

= 2V2wy - yv?-wZ + v2u) + 23

= xV2y - zV2w + V2y' + 2
4 X 0

yVwa - xvzwy + vzwé + 2

Jw W

—Y _ Z
9z 3y \°
ow ow
2z ___Xx
X 3z \°
oW ow
X _ X
3y Ix \’

(4-11)

(4-12)

(4-13)

(4-14)

(4-15)
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d ] d 0
A= -z o - X T
;y 9z z Byzwx * ;Z ax  * 3z wy

s 5 duj vy dw)
tyxIo "y gfw + + + . (4-16)

z d X oy dz

Before proceeding further, one feature of basic importance should
be brought out which we by-passed without closer discussion at an earlier
stage: mnamely, when by virtue of equations (3-35) - (3-37) or (3-38) -
(3-40) we replaced the three dependent variables u, v, w or u', v', w'
on their left-hand sides by siZx new variables W s wy, w, and ué, vé, W
or w1, wy,, w1 and ug, vg, wg on their right-hand sides. This
deliberately created redundancy permits us to impose without the loss
of generality additional constraints on these variables, not embodied
in the fundamental equations of Section II; and this we propose to do at
the present time. We propose, in particular, to assume that the primed
axes x'y'z' obtained by a rotation of the inertial system xyz, about
a fixed origin, in accordance with the transformation (3-1) remain
rectangular--an assumption to which implies, in effect, that the

Eulerian angles 6, ¢, ¢ 1involved in the direction cosines a and,

ik

therefore, in the angular velocity components w as

or W_y _v 1
X’y’z X ’y ’z
defined by equations (3-28) - (3-30) or (3-31) - (3-33) are functions of
the time t alone (for should they depend, in addition, on the spatial

coordinates X, y, z, a rotation as represented by equations (3-1) would

result in a curvilinear coordinate system).

This assumption will neatly separate the physical meaning of the two

groups of variables: for while the angular velocity components W g,z
’ b

will describe a rigid-body rotation of our dynamical system (during which
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the position of each particle remains unchanged in the primed coordinates),
the remaining velocity components wug, Vg, w) will represent de formation

of our body, in the primed system, in the course of time, It is, there-
fore, the latter which will be of particular interest for the main

problem which we have in mind; and in what follows, we propose to investigate
the extent to which their occurrence may modify the structure of our

equations.

In order to do so we notice first that, inasmuch as the angular
velocity components are hereafter to be regarded as functions of t alone

it follows from (4-13) - (4-15) that

V24 = Vzua,
2y = Vzvé, (4-17)
2vs = U2y,
Véw = V W

and, similarly, the divergence (4-16) of the velocity vector will reduce

to
du/ av! dw!
0 0 0
voo 4-18
b= ox Yoy ez (4-18)

In consequence, the corresponding expressions on the right-hand sides
of equations (4-10) - (4-12) are obtained if the velocity components

u, v, w present there are replaced by uj), vj, wy; and 4 by Aé.
Therefore,

olyF - 26} = w{yv2wy - szvé + %Dlﬁé}

OQUrn v 4 B v _
+ ax{DluO + ax(yw0 zvo)} +




olzF - x3¢}
and

o{xG - yF}
where the symbols
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2 2 iy
u{xvivy - yv2ul + 5 D3dg

2 3u
3 BX{2D3U6 + D6V(')}

2 3u ' '

3 ay{2D3VO - D6u0}

S - P S
aZ{D3w + az(xvO yuo)}

0

1
—— m—— + ——
ZD3]“l 3 tDgu,

(4-19)

(4-20)

(4-21)

(j =1, ... 6) stand for the following operators

tH
<
|
I
N
|

(4-22)

(4-23)
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D3 = x 3; R v (4-24)
I TS 3
Dq:Zaz""yay’ (4 25)
R R -

Dg = x . + z 7 (4-26)
- . 9 9 . _

DG = X ™ + y 8}7 H (4 27)

and where
ow'! ov!
0 0
g = 5y -3z ¢ (4-28)
du! ow !
0 0
"= T ex (4-29)
vy du'
L= = -2, (4-30)
o9x Yy

denote the components of vorticity of the deformation vector.

As the next step of our analysis, let us integrate both sides of
the equations (4-~4) - (4-6) over the entire mass of our configuration

with respect to the mass element

dm = pdV = pdxdydz. (4-31)
If, as usual,

A= /kyz + 22)dm, (4-32)

B = /<x2 + 22)dm, (4-33)

¢ = [ + y?)am (4-34)

denote the moments of inertia of our configuration with respect to the
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axes X, y, z; and

D =‘/§zdm, (4-35)
E =jfxzdm, (4-36)
F =M[xydm (4-37)

stand for the respective products of inertia, the mass integrals of the
equations (4-4) - (4-6) combined with (4-1) - (4-3) will assume the

forms

Ab + (C-Bww -Dw? - ) - E0 + ww)
X y z y Z z Xy
- F(wy - wxwz)
+ ZwX/Eyvé + zwé)dm - 2wy]§u6dm - ZmZ/;uédm

+fD1PdV - fDlﬂdm = /{z(\'r)(') - y(&) }}dm +fp{y3f - 2§ }av, (4-38)

; - - . - - 2 - 2
Bwy + (A C)wxwz D(u)Z wxwy) E(wz wx)
- F(wX + wywz)
' ' - ' _ '
+ 2w /zxuo + zwo)dm szj;vodm wa/%v dm

y
+_/bZPdV - /bzﬁdm = /{x(&)é - z(ﬁ)é}dm + /g{zg' - x3t}av, (4-39)
and

sz + (B - A)wxwy - D(my + wxwz) - E(wX - wywz)
- 2 . .2
F(wx wy)
' - '
+ szj&yvé + xug)dm - 2wX/;w0dm 2wy/§w0dm

+ [ospav - [osaam = fly@p - w0 plan + fo{xG - yTlav.  (4-40)

The preceding three equations represent the exact form of the

generalized Eulerian equations governing the precession and nutation of
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self-gravitating configurations which consist of a viscous fluid. They
constitute a system of three ordinary differential equations for wx,y,z
considered as functions of the time t alone. If the body in question
were rigid (non-deformable)--or, if deformable, it were subject to no
time-dependent deformation--all three velocity components u', v', w'
relative to the rotating frame of reference (and thus, by (3-42),

ué, vy, w)) would be identically zero. 1In such a case, equations

(4-38) - (4-40) would reduce to their more familiar form

. - - 2 - 2y - o+ ow ow
wa + (C B)wywz D(wy wz) E(wz % y)

- F((:Uy - (A)Xu)z) +[D1PdV - leﬂodm = fDIQIdm, (4-41)

B

+

- _ . - - 2 - .2
(A C)wxwz D(u)Z wxwy) E(u)Z wx)

F((:)X + mywz) + jDQ_PdV - [Dondm = szﬂldm, (4'—42)

and

Co + (B - A)wxwy - D(u)y + wxwz) - E(wx - wywz)

where we have decomposed the total gravitational potential
Q= Qo + Ql (4-44)

into its part arising from the mass of the respective body (f¢) and

that arising from external disturbing forces (Ql) if any.

In the case of a rigid body, the existence of hydrostatic equilibrium

requires that

jb PdV = /b.ﬂodm (4-45)
i i
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exactly for i =1, 2, 3. If, moreover, we choose our system of
inertial axes =xyz to coincide with the principal axes of inertia of
our configuration, it can be shown that all three moments of inertia

(4-35) - (4-37) can be made to vanish; and for

D=E=F=0 (4-46)

our equations (4-41) - (4-43) will reduce further to

Ad)X + (C - B)wywz = D1Q;dm,
Bd)y + (A - Q) wxwz = DyQ1dm, (4-47)
Ct:uz + (B - A)mxwy = D3Q,dm,

which is the familiar form of the Eulerian equations for the precession

of rigid bodies.

1f, however, the body in question were fluid and subject to dis-
tortion by external forces--though not necessarily (like equilibrium
tides) fluctuating in time--equations (4-47) would cease to be exact to
the extent to which equations (4-45) need no longer hold true. The reader
may note that as long as the functions P(r) and Qg(r) are purely
radial (as they would be in the absence of any distortion) operation with
Di (i =1, 2, 3) will annihilate them completely; so that equations (4-45)
continue to be fulfilled identically. The same argument discloses,
however, that for fluid bodies, equations (4-45) may become inequalities
to the extent brought about by distortion; and--to this extent--the Eulerian

differential equations for the precession and nutation of rigid and fluid

bodies may be different even if the form of the fluid does not vary with
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the time.

If, however, this latter condition is not fulfilled--such as, for
instance, in the case when the period of axial rotation of the fluid
body differs from that of the revolution of an external attracting mass
producing dynamical tides on the rotating fluid-~the velocity components
uy, vy, wy will emerge to give rise to supplementary terms in the
equations (4-38) - (4-40) which can be classified in two groups. Those
on the left-hand sides of the respective equations are factored by the
angular velocity components W, s wy, w, which play the role of dependent
variables of our problem. However, their coefficients are not constants
(like A, B, C; D, E, F), but functions of the time. The second group
of new terms arising on the right-hand sides of the same equations are
independent of wx,y,z and render our system non-homogeneous. The first
mass-integral on the right-hand sides of equations (4-38) - (4-40) arises
from the accelerations (&)6, (6)6, (&)6 experienced by the body subject
to deformation--irrespective of whether the flow due to this motion is
inviscid or viscous; while the second group of volume integrals (the
integrands of which are given by equations (4-19) - (4-21)) represent
the effects of viscosity proper; and if the latter is large, these may

be predominant.
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